Optimización de los Diagnósticos Médicos Mediante Técnicas de Minería de Datos

Optimización de los Diagnósticos Médicos Mediante Técnicas de Minería de Datos

Authors

  • Marcela Baukloh Coronil Universidad Nacional de Itapúa. Encarnación, Paraguay.
  • Carina Yoshimura Kumano

DOI:

https://doi.org/10.70833/rseisa10item153

Keywords:

Data Mining, Classification, Patterns, Medical Diagnosis, Pregnancy

Abstract

The objective of this paper was to define patterns of patients under similar conditions, for the optimization of medical diagnostics using data mining techniques, specifically classification techniques applied to Latin American Center of Perinatology database, which have the history of pregnant attending prenatal checkups in the Encarnación Regional Hospital, between 2009 and 2014. During the implementation of the project, it was carried out the analyses of possible causes of high blood pressure; premature birth and premature membrane rupture in pregnant. Classifiers indicated a high percentage of accuracy in the results, for example, a classifier indicated 95% accuracy determining the main cause of high blood pressure induced by pregnancy the hypertension historic of the patient. Considering the high percentage of accuracy of the classifiers, the conclusion is that the patterns defined by the classification algorithms are valid for the medical diagnosis of prenatal care, and through these patterns, some medical theories are confirmed, such as the importance of prenatal consultations, the incidence of personal or family history, and others.

Downloads

Download data is not yet available.

Author Biography

Marcela Baukloh Coronil, Universidad Nacional de Itapúa. Encarnación, Paraguay.

Profesora Investigadora de la UNI

References

Franco-Arcega. A.. Carrasco-Ochoa. J. A. Sanchez-Diaz, G., & Martinez-Trinidad. J. F. (2013). Decision Tree based Classifiers for Large Datasets.Computación y Sistemas, 17(1), 95-102.

Britos, P., Hossian, A., García Martínez, R., & Sierra, E. (2005). Minería de Datos Basada en Sistemas Inteligentes. 876 páginas. Editorial Nueva Librería. ISBN 987-1104-30-8.

Chaurasia, V., & Pal, S. (2014). Data Mining Approach to Detect Heart Diseases. International Journal of Advanced Computer Science and Information Technology (IJACSIT) Vol. 2, 56-66.

Dávila, F., & Sánchez, Y. (2012). Técnicas de minería de datos aplicadas al diagnóstico de entidades clínicas. Revista Cubana de Informática Médica.

Dávila Hernández, F., & Sánchez Corales. Y. (2012). Técnicas de minería de datos acadas al diagnóstico de entidades clínicas. Revista Cubana de Informática Médica, 4(2), 174-183.

Jiawei Han: Jian Pet; Yiwen Yin; Runying Mao. (2004). Mining Frequent Patterns without Candidate Generation: A Frequent Pattern Tree Approach. 8(1).

Pinho Lucas, J. (2010). Métodos de clasificación basados en asociación aplicados a sistemas de recomendación.

Lugo-Reyes, S. O. (2014). Inteligencia artificial para asistir el diagnóstico clínico en medicina. Órgano oficial del Colegio Mexicano de Inmunologia Clinica y Alergia, AC y de la Sociedad Latinoamericana de Alergia, Asma e Inmunología, 61, 110-120.

Quesada, Y, A., Pérez, D. W., & Suárez, A. R. (2012, June). Minería de Datos aplicada a la Gestión Hospitalaria. In V Simposio de Ingenieria Industrial y Afines.

Hofmann, M., & Klinkenberg, R. (Eds.). (2013). RapidMiner: Data mining use cases and business analytics applications. CRC Press.

Published

2016-12-30

How to Cite

Baukloh Coronil, M., & Yoshimura Kumano, C. (2016). Optimización de los Diagnósticos Médicos Mediante Técnicas de Minería de Datos. Journal on Studies and Research of Academic Knowledge, (10), 19–22. https://doi.org/10.70833/rseisa10item153

Issue

Section

Research Articles

Categories

Loading...