Optimización de los Diagnósticos Médicos Mediante Técnicas de Minería de Datos
DOI:
https://doi.org/10.70833/rseisa10item153Keywords:
Data Mining, Classification, Patterns, Medical Diagnosis, PregnancyAbstract
The objective of this paper was to define patterns of patients under similar conditions, for the optimization of medical diagnostics using data mining techniques, specifically classification techniques applied to Latin American Center of Perinatology database, which have the history of pregnant attending prenatal checkups in the Encarnación Regional Hospital, between 2009 and 2014. During the implementation of the project, it was carried out the analyses of possible causes of high blood pressure; premature birth and premature membrane rupture in pregnant. Classifiers indicated a high percentage of accuracy in the results, for example, a classifier indicated 95% accuracy determining the main cause of high blood pressure induced by pregnancy the hypertension historic of the patient. Considering the high percentage of accuracy of the classifiers, the conclusion is that the patterns defined by the classification algorithms are valid for the medical diagnosis of prenatal care, and through these patterns, some medical theories are confirmed, such as the importance of prenatal consultations, the incidence of personal or family history, and others.
Downloads
References
Franco-Arcega. A.. Carrasco-Ochoa. J. A. Sanchez-Diaz, G., & Martinez-Trinidad. J. F. (2013). Decision Tree based Classifiers for Large Datasets.Computación y Sistemas, 17(1), 95-102.
Britos, P., Hossian, A., García Martínez, R., & Sierra, E. (2005). Minería de Datos Basada en Sistemas Inteligentes. 876 páginas. Editorial Nueva Librería. ISBN 987-1104-30-8.
Chaurasia, V., & Pal, S. (2014). Data Mining Approach to Detect Heart Diseases. International Journal of Advanced Computer Science and Information Technology (IJACSIT) Vol. 2, 56-66.
Dávila, F., & Sánchez, Y. (2012). Técnicas de minería de datos aplicadas al diagnóstico de entidades clínicas. Revista Cubana de Informática Médica.
Dávila Hernández, F., & Sánchez Corales. Y. (2012). Técnicas de minería de datos acadas al diagnóstico de entidades clínicas. Revista Cubana de Informática Médica, 4(2), 174-183.
Jiawei Han: Jian Pet; Yiwen Yin; Runying Mao. (2004). Mining Frequent Patterns without Candidate Generation: A Frequent Pattern Tree Approach. 8(1).
Pinho Lucas, J. (2010). Métodos de clasificación basados en asociación aplicados a sistemas de recomendación.
Lugo-Reyes, S. O. (2014). Inteligencia artificial para asistir el diagnóstico clínico en medicina. Órgano oficial del Colegio Mexicano de Inmunologia Clinica y Alergia, AC y de la Sociedad Latinoamericana de Alergia, Asma e Inmunología, 61, 110-120.
Quesada, Y, A., Pérez, D. W., & Suárez, A. R. (2012, June). Minería de Datos aplicada a la Gestión Hospitalaria. In V Simposio de Ingenieria Industrial y Afines.
Hofmann, M., & Klinkenberg, R. (Eds.). (2013). RapidMiner: Data mining use cases and business analytics applications. CRC Press.
Downloads
Published
How to Cite
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Attribution License CC-BY
You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material for any purpose, including commercially.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if any changes have been made. You may do so in any reasonable way, but not in any way that suggests that you or your use is endorsed by the Licensor.